
Text Mining
Week 5

Word2Vec, embeddings

• Resources:
• Stanford CS224d: Deep Learning for NLP (Manning and Socher)

• http://cs224d.stanford.edu/index.html
• “word2vec Parameter Learning Explained”, Xin Rong

• https://ronxin.github.io/wevi/
• Word2Vec Tutorial - The Skip-Gram Model

• http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
• https://github.com/tmikolov/word2vec
• Softmax Regression Tutorial

Context

• Context-assisted techniques to Context-centric techniques
• Traditional context-assisted

• Word Sense Disambiguation
• Synonym detection
• Relations extraction
• Speech

• Why do we need context meaning

How can we encode word meaning?

• Use a taxonomy like WordNet that has hypernyms (is - a) relationships
as well as synonym sets (synsets)

• WordNet:
• Great as a resource, but

• Missing new words
• Subjective
• Requires human labor to create and adapt
• Hard to computer accurate word similarity

One-hot vector representation

• In vector space terms, this is a vector with one 1 and a lot of zeroes:
[0 0 0 0 0 0 0 1 0 0 0 0 0 0]

• Dimensionality:
• 20K(speech)
• 50K(PennTreeBank)
• 500K(big vocab)
• 13M(Google 1T)

• One-hot – localist representation

Distributional similarity based representation

• Distributional  the word meaning is distributed over a vector
• “You shall know a word by the company it keeps” (J.R.Firth, 1957:11)
• word2vec Approach to represent the meaning of word

• Represent each word with a low-dimensional vector
• Word similarity = vector similarity
• Key idea: Predict surrounding words of every word
• Fast and can easily incorporate a new sentence/document or add a word to

the vocabulary

The Power of Word Vectors

• They provide a fresh perspective to ALL problems in NLP, and not just solve one
problem.

• Technological Improvement
 Rise of deep learning since 2006 (Big Data + GPUs + Work done by Andrew Ng, Yoshua

Bengio, Yann Lecun and Geoff Hinton)

 Application of Deep Learning to NLP – led by Yoshua Bengio, Christopher Manning, Richard
Socher, Tomas Mikalov

• The need for unsupervised learning . (Supervised learning tends to be
excessively dependant on hand-labelled data and often does not scale)

Examples

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

So, how exactly does Word Embedding
‘solve all problems in NLP’?

Building these magical vectors . . .

• How do we actually build these super-intelligent vectors, that seem to have such
magical powers?

• How to find a word’s friends?

• We will discuss the most famous methods to build such lower-dimension vector
representations for words based on their context

1. Co-occurrence Matrix with SVD
2. word2vec (Google)
3. Global Vector Representations (GloVe) (Stanford)

Word Representations
Traditional Method - Bag of Words Model Word Embeddings

• Uses one “hot encoding”

• Each word in the vocabulary is represented
by one bit position in a HUGE vector.

• For example, if we have a vocabulary of
10000 words, and “Hello” is the 4th word in
the dictionary, it would be represented by:
0 0 0 1 0 0 0 0 0 0

• Context information is not utilized

• Stores each word in as a point in space,
where it is represented by a vector of fixed
number of dimensions (generally 300)

• Unsupervised, built just by reading huge
corpus

• For example, “Hello” might be represented
as :
[0.4, -0.11, 0.55, 0.3 . . . 0.1, 0.02]

• Dimensions are basically projections along
different axes, more of a mathematical
concept.

Singular Value Decomposition

Singular Value Decomposition

The problem with this method, is that we may end up with matrices having billions of rows and columns,
which makes SVD computationally restrictive.

Word2Vec

• train a simple neural network with a single hidden layer to perform a
certain task (word prediction)

• but then we’re not actually going to use that neural network for the
task we trained it on!

• Instead, the goal is actually just to learn the weights of the hidden
layer–we’ll see that these weights are actually the “word vectors”
that we’re trying to learn.

Fake Task

• We’re going to train the neural network to do the following.
• Given a specific word in the middle of a sentence (the input word), look at the

words nearby and pick one at random.
• The network is going to tell us the probability for every word in our

vocabulary of being the “nearby word” that we chose.
• For "nearby", there is actually a "window size" parameter to the algorithm. A

typical window size might be 5, meaning 5 words behind and 5 words ahead
(10 in total).

• Order does not matter
• The network is going to learn the statistics from the number of times each pairing shows up.

Context windows
• Context can be anything – a surrounding n-gram, a

randomly sampled set of words from a fixed size window
around the word

For example, assume context is defined as the word
following a word.
i.e.
Corpus : I ate the cat
Training Set : I|ate, ate|the , the|cat, cat|.

Represent the meaning of word – word2vec

• 2 basic neural network models:
• Continuous Bag of Word

(CBOW): use a window of word
to predict the middle word

• Skip-gram (SG): use a word to
predict the surrounding ones in
window.

18

Model Details

• First, build vocabulary (let’s say 10,000 unique words)
• One-hot vector: 1 element of the 10,000-element vector is 1, the

remaining 9,999 elements are 0s.

Word2vec – Continuous Bag of Word
• E.g. “The cat sat on floor”

• Window size = 2

20

the

cat

on

floor

sat

• There is no activation function on
the hidden layer neurons, but the
output neurons use softmax.

• When training this network on
word pairs, the input is a one-hot
vector representing the input word
and the training output is also a
one-hot vector representing the
output word.

• But when you evaluate the trained
network on an input word, the
output vector will actually be a
probability distribution (i.e., a
bunch of floating point
values, not a one-hot vector).

Architecture

The Hidden
Layer

• Let us say we are learning
vectors with 300 features.

• Hidden layer is a weighted
10,000 X 300 matrix

• The rows of this weight
matrix, these are actually
what will be our word
vectors!

• Our goal is to learn the
hidden layer weight matrix
(lookup table)

The Output Layer

• Input: The 1x300 word vector for ‘ants’ then gets fed to the output
layer. The output layer is a sotfmax regression classifier

• Softmax regression (or multinomial logistic regression) is a generalization of
logistic regression to the case where we want to handle multiple classes.

• Output: between 0 and 1, and the sum of all these output values will
add up to 1.

• Specifically, each output neuron has a weight vector which it multiplies
against the word vector from the hidden layer, then it applies the function
exp(x) to the result.

• Finally, in order to get the outputs to sum up to 1, we divide this result by the
sum of the results from all 10,000 output nodes.

26

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

one-hot
vector

Index of cat in vocabulary

27

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer
௏×ே

௏×ே

V-dim

V-dim

N-dim

ே×௏

V-dim

N will be the size of word vector

We must learn W and W’

28

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

+ 𝑣ො =
𝑣௖௔௧ + 𝑣௢௡

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

1

0

0

0

0

0

0

…

0

௏×ே
்

௖௔௧ ௖௔௧
2.4

2.6

…

…

1.8

=

29

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

+ 𝑣ො =
𝑣௖௔௧ + 𝑣௢௡

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

௏×ே
்

௢௡ ௢௡
1.8

2.9

…

…

1.9

=

30

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

𝑦ොୱୟ୲

Output layer
௏×ே

௏×ே

V-dim

V-dim

N-dim

௏×ே
ᇱ

V-dim

N will be the size of word vector

𝑣ො

31

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

𝑦ොୱୟ୲

Output layer
௏×ே

௏×ே

V-dim

V-dim

N-dim

௏×ே
ᇱ

V-dim

N will be the size of word vector

𝑣ො

0.01

0.02

0.00

0.02

0.01

0.02

0.01

0.7

…

0.00

𝑦ො

We would prefer 𝑦ො close to 𝑦ො௦௔௧

32

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

௏×ே

௏×ே

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

௏×ே
்

Contain word’s vectors

௏×ே
ᇱ

We can consider either W or W’ as the word’s representation. Or
even take the average.

Training Data
1. eat|apple

2. eat|orange

3. eat|rice

4. drink|juice

5. drink|milk

6. drink|water

7. orange|juice

8. apple|juice

9. rice|milk

10.milk|drink

11.water|drink

12.juice|drink

Concept :

1. Milk and Juice are drinks

2. Apples, Oranges and Rice can be eaten

3. Apples and Orange are also juices

4. Rice milk is a actually a type of milk!

Word Embedding Visualization
http://ronxin.github.io/wevi/

• GloVe is an unsupervised learning algorithm for obtaining vector
representations for words. Training is performed on aggregated global
word-word co-occurrence statistics from a corpus, and the resulting
representations showcase interesting linear substructures of the word
vector space.

• https://nlp.stanford.edu/projects/glove/

• Doc2Vec:
• Le and Mikolov, Distributed Representations of Sentences and Documents
• https://radimrehurek.com/gensim/models/doc2vec.html

• Mikolov et al, Distributed Representations of Words and Phrases and
their Compositionality

• https://code.google.com/archive/p/word2vec/

